Efficient and Scalable Virtio

(aka ELVIS)

Nadav Har’Elx Abel Gordon* Alex Landaux

Muli Ben-Yehuda~® Avishay Traegerx Razya Ladelsky*

*|BM Research — Haifa
*Technion and Hypervisor Consulting

#kvmforum

Sheraton Grand Hotel Edinburgh

Edinburgh, UK
October 21 - 23, 2013

Efficient and Scalable Virtio — KVM Forum 2013

Why (not) Virtio ?
" Pros
— Software Defined Networking
— File based images
— Live Migration
— Fault Tolerance
— Security
=Cons
— Scalability Limitations

—Performance Degradation
—Scalability Limitations

. —Performance Degradation

Efficient and Scalable Virtio — KVM Forum 2013

/O Virtualization Models Interposable
AN

Bare-metal

/0 (no VM)

v
Non-virtualizabl

Non-inte\rposable (ELERYETEDY Unmodified

Guest

~ Emulated
@ 1/0

Scalability and Performance

Flexibility

\

Efficient and Scalable Virtio — KVM Forum 2013

» The guest posts |/O requests in ring-queue (shared with the
QEMU or vhost) and sends a request notification (PIO)

= QEMU or vhost processes the requests and sends a reply
notification (virtual interrupt)

Guest
|/0 Request Rf};g /O Reply
Notification Queue Notification
(P10) Y > . (virtual interrupt)
vhost/gemu
/0 /o

|/O Device

Efficient and Scalable Virtio — KVM Forum 2013

How |I/O notifications are sent/received

*— CPU context switch (VMExits and VMEntries)
Il 1/0 processing
[] Guest execution

®-----—-- >
VCPU _________\4_____/1 ___________ il
Thread I/0 notification !

(Core X) | Guest-to-Host . |
1

l/O Process 1/O I Complete I/O

Thread Request ¢ Request

. (Core YY)

vhost/gemu

[
»

=1 thread per virtual CPU (VCPU)
=1 or more threads per virtual I/O device

Efficient and Scalable Virtio — KVM Forum 2013

Is this model scalable with the number of guests, cores and I/O
bandwidth ?

VM2 |
very ||| | veP op
) VCPU
&€ Exit
— Exit .
O VCPU
5 VM1 VM| Exit
0 VM2 VCPU VCPU
5 | ek A

Core 1 Core 2 Core N || Core N+1
N— _

VCPU and I/O thread-bagcgcheduling for all cores
(host Linux scheduler)

Depends on Linux (host) thread scheduler
but the scheduler has no information about
. |the I/O activity of the Virtio queues....

v

Efficient and Scalable Virtio — KVM Forum 2013

» Notifications cause exits (context switches) == overhead!

= Current trend is:

— Towards multi-core systems with an increasing numbers of
cores per socket (4->6->8->16->32) and guests per host

— Faster networks with expectation of lower latency and
higher bandwidth (1GbE->10GbE->40GbE->100GbE)

= /O virtualization is a CPU intensive task, and may require
more cycles than the available in a single core

We need a Virtio back-end that considers these
facts and trends!

Efficient and Scalable Virtio — KVM Forum 2013

ELVIS (based on vhost): use fine-grained 1/O scheduling and
dedicate cores to improve scalability and efficiency

|
o VM2 VMi
VM1 VCP
£ |||vepul|||veru ory 1 vhost thread per
'E " > /0O core handles
2 VCPU requests of many
o ||| vm2 ||| vmt VMs/Virtio devices
g]<J VCPU VCPU VMi
I VCPU
/0
Core 1 Core 2 Core N Core)
v\ RN)
" Y

thread-based scheduling fine-grained I/O scheduling

* Process queues based on the I/O activity

 Balance between throughput and latency

* No process/thread context switches for 1/0

« Exitless communication (next slide)

8 » Consider if the queue’s owner (VM) is running or not (not yet implemented)

Efficient and Scalable Virtio — KVM Forum 2013

ELVIS: remove notifications overhead to further improve efficiency

Traditional
Paravirtual
/0

ELVIS

VCPU
Thread
(Core X)

I/0 notificatipn
Guest-to-Hast

/O
Thread
J[Core Y)

N~—"

Process 1/O I Complete 1/0
Request ¢ Request

VCPU
Thread
(Core X)

R R R e L L R e LR S >

\ I/O notification
‘\ Guest-to-Host
1

I/0 notification
Host-to-Guest

l/O
Thread
(Core Y)

—,
I
1
]
I
I
I

¢ Complete I/O
Request

Process I/0
Request

*-

@o—

v

Efficient and Scalable Virtio — KVM Forum 2013

ELI: Exitess Interrupts to simulate Posted Interrupts

= ELI configures the CPU to deliver all interrupts to the guest
* ELI runs the guest using a shadow IDT

» Host interrupts are bounced back to the host in the form of
exceptions and re-generated with software interrupts/self IPI

= ...without the guest being aware of it

Guest Interrupt

IDT Har)gler

Assigned
Interrupt

e

Physical
. Interrupt

IDTR <

Limit

VM Non-assigned
ELI ! Interrupt

P=0
P-1

IDT Entry
IDT Entry

IDT Entry P=0

Handler

IDT Entry

Efficient and Scalable Virtio — KVM Forum 2013

» Guests write to the LAPIC EOI register

*Old LAPIC interface:
— KVM traps memory accesses > page granularity

=New LAPIC interface (x2APIC), required for Exitless
Completions

— KVM traps accesses to MSRs - register granularity

Cache L1 ‘el KB

Cache L2 t25900 KR

Cache 13 (AT KR
Ratio Status:imlocked (Him:

ELI gives direct access | s

Hardware Prefetcher

only to the EOIl register | i b e mesee e

ACPT MADT ordering [Modern ordering)
Max CPUID Value Limit [Disahled]
Intel (R} Wirtwalization Tech [Enabled]

11 Intel (R} HT Technology [Enabled]

Efficient and Scalable Virtio — KVM Forum 2013

» Posted-Interrupts: new HW feature to inject a virtual interrupt
from a core running in root mode to a VM running in a
different core (guest mode) without forcing an exit

» Para-Virtual Posted interrupts:

— Write the virtual interrupt vector to be injected in a
descriptor (shared memory between KVM and the guest’s
kernel)

— Send IPI (pre-defined vector) using ELI

— Guest is modified to handle the IPl and call the
corresponding (virtual) interrupt handler

12

Efficient and Scalable Virtio — KVM Forum 2013

ELVIS: Fine-grained I/O scheduling in a nutshell

» Single vhost-thread in a dedicated core:

— Monitors the activity of all queues (number of pending requests, how
long the requests are waiting, queue progress...)

— Decide which queue should be processed and for how long

g

|->Q1 : throughput intensive

|—> Q2: latency sensitive

|->Q3: throughput intensive

13

Efficient and Scalable Virtio — KVM Forum 2013

» Dedicate 1 I/O core per CPU socket
— Cores per socket continue to increase year by year

— More cores are required to virtualize more bandwidth at
lower latencies (network links continue to be improved)

— NUMA awareness: shared LLC cache and memory
controller, DDIO technology

= Deliver interrupts to the “corresponding” I/O core

— Interrupts are processed by |/O cores and do not disturb
the running the guests

— Improve locality

— Multi-queue, Multi-port and SR-IOV adapters can dedicate
interrupts per queue/port/virtual function

14

Efficient and Scalable Virtio — KVM Forum 2013

= Patches published in github (based on Kernel 3.9)
— https://qgithub.com/abelg/virtual io acceleration/commits/ibm-io-acceleration-3.9-
github

= Work in progress by Eyal Moscovici <eyalmo@il.iom.com>
— Control mechanism (sysfs interface) to:
 allocate or de-allocate vhost threads on the fly
« migrate a Virtio device/queue to a different vhost thread on the fly
— Policy framework to monitor the system and orchestrate the control mechanism

= Get support to upstream the following features:

1. Shared vhost-thread: same thread handles many virtio devices — default 1 thread
per virtio device as it is today

Control mechanism (sysfs): allocate/de-allocate vhost-threads and assign queues
to vhost-threads

Vhost statistics (sysfs): expose virtio queues and vhost-thread progress/load
Polling optimization: poll queues to remove PIO exits (guest-to-host notifications)
Policy mechanism: framework and rules to orchestrate the system (Python ?)
Porting to PowerKVM

N

2

Efficient and Scalable Virtio — KVM Forum 2013

Implementation
— Based on KVM (Linux Kernel 3.1 / QEMU 0.14)
— With VHOST, in-kernel paravirtual 1/0O framework

— Use ELI patches to implement para-virtual posted-interrupts and to
improve hardware-assisted non-interposable 1/0 (SR-IOV)

Experimental Setup

— IBM System x3550 M4, dual socket 8 cores per socket Intel Xeon
E2660 2.2GHz (SandyBridge)

— Dual port 10GbE Intel x520 SRIOV NIC

— 2 identical servers: one used to host the VMs and the other used to
generate load on bare-metal

16

Efficient and Scalable Virtio — KVM Forum 2013

» Repeated experiments using 1 to 14 UP VMs
— 1x10GbE when running up-to 7 VMs
—2x10GbE when running more than 7 VMs

» Compared ELVIS against 3 other configurations

* No interposition
— Each VM runs on a dedicated core and has a SR-IOV VF
assigned using ELI

— The closer ELVIS is to this configuration, the smaller the
overhead is (used to evaluate ELVIS efficiency)

17

Efficient and Scalable Virtio — KVM Forum 2013

* N=number of VMs (1 to 14)
= Used N+1 cores (N< 7) or N+2 cores (N>7)
— This is the resource overhead for I/O interposition

=ELVIS
— 1 dedicated core per VCPU (VM)
—1 core (N<=7) or (N>7) 2 cores dedicated for |/O

= Baseline

—N+1 cores (N = 7) or N+2 cores (N>7) to run VCPU and I/O
threads (no thread affinity)

= Baseline+Affinity

— Baseline but dedicate 1 core per VCPU and pin I/O threads
s to dedicated I/O cores

Efficient and Scalable Virtio — KVM Forum 2013

Throughput (bps)

Netperf
20G T T | T I T T ! !
166 | — Nointerposition Scaled perfectly
—+— Baseline .
14G Baseline-+affinity 1 core managed to handle 1/O
12G for 7 VMs (Cores)
10G *Maximum throughput
8G -Coalesced more interrupts
jg than the SR-IOV device
p (4K-11K vs. 30K ints/sec)
0G
~ Y —~ = Y ~
1x10Gb port | 2x10Gb port
ELVIS: 1 core dedicated for /O and 1 ELVIS: 2 cores dedicated for 1/O and 1
dedicated core per VM (N+1 total) dedicated core per VM (N+2 total)
Baseline: N+1 cores (to handle I/O and to Baseline: N+2 cores (to handle 1/O and to
run the VMs) run the VMs)

No Interposition: N cores to run the VMs No Interposition: N cores to run the VMs

19

Efficient and Scalable Virtio — KVM Forum 2013

Baseling =——— |

2 | - ELVIS
8 80t No |nt~§erpc?3|t|on —
Q
E
a\
C
)
g
2 20| _
< i i ; 5
ol i
1 2 3 4 5 6 7 8 9 101112 13 14

Number of VMs

Latency slightly increased with more VMs

Better than No Interposition in some cases because
enabling SR-I0OV in the NIC increases latency by 22%
(ELVIS disables SR-IOV)

20

Efficient and Scalable Virtio — KVM Forum 2013

Memcached - 90% get, 10% set, 32 concurrent requests per VM
1KB value Size, 64B key size e ELVIS

21

—e— No interposition

—+— Baseline
Memcached —a— Baseline+affinity
1200K
1000K
800K
600K

400K

Transactions per second

200K —"
———a— ‘
OK I I | I]]
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of VMs

|/O core saturated after 3 VMs

*ELVIS was up to 30% slower than No interposition
when the I/O core was not saturated, but was always
30%-115% better than Baseline

Efficient and Scalable Virtio — KVM Forum 2013

Filebench — block 1/O interposition based on host RAM disk
4x4KB random writes, 4x4KB random reads per VM

22

operations per second

Avg. latency (millisec)

350K

300K |
250K r
200K r
150K r
100K |
50K r

oK

1

09 r
08 r
0.7
06 r
05 r

04

0.3 I
02 |
01 L

0

—— ELVIS
—— Baseline
—— B:aselline-:l-affi:nity:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Baseline —4—

ELVIS —%—

Latency remains
constant

*Throughput increases
linearly

1.2 3 4 5 6 7 8 9 1011 12 13 14

Numbers of VMs

Efficient and Scalable Virtio — KVM Forum 2013

Filebench (*) - 4 threads performing 8KB random reads per VM
using fusion-io (PCle flash) as a block device for the VMs

Accumulative throughput

80000
70000

60000
20000

m Baseline
mELVIS

40000

opsisec

30000

20000
10000
0 T

1vm 2vms Jvms 4vms Svms

Number of cores used = number of VMs + 1

(*) Evaluation performed by Razya Ladelsky <razyal@il.ibom.com> using a
different machine setup, Kernel 3.9, QEMU 1.3, and vhost-block back-end

shared by Asias He <asias@redhat.com>
23

Efficient and Scalable Virtio — KVM Forum 2013

= Current trend towards multi-core systems, towards faster
networks and block devices makes Virtio inefficient and not
scalable

» ELVIS presents a new efficient and scalable model based on
vhost

= Future Work

— Mechanism to dynamically allocate or release I/O cores and
map Virtio queues to I/O cores

— Policy to monitor the system load, decide how many 1/O
cores are required and map queues to 1/O cores

24

Efficient and Scalable Virtio — KVM Forum 2013

25

