
Nadav Har’El× Abel Gordon× Alex Landau×

Muli Ben-Yehuda×,¤ Avishay Traegerx Razya Ladelskyx

× IBM Research – Haifa
¤ Technion and Hypervisor Consulting

Efficient and Scalable Virtio
(aka ELVIS)

2

Efficient and Scalable Virtio – KVM Forum 2013

Why (not) Virtio ?

�Pros

– Software Defined Networking

– File based images

– Live Migration

– Fault Tolerance

– Security

– ….

�Cons

– Scalability Limitations

–Performance Degradation

–Scalability Limitations

–Performance Degradation

3

Efficient and Scalable Virtio – KVM Forum 2013

I/O Virtualization Models

☺

�

�

S
c
a

la
b

ili
ty

 a
n
d
 P

e
rf

o
rm

a
n
c
e

Flexibility
� � ☺

Bare-metal
I/O (no VM) SR-IOV +

ELI

Virtio
(para-virtual)

SR-IOV

ELVIS

Emulated
I/O

Non-virtualizable

Unmodified GuestNon-interposable

Interposable

4

Efficient and Scalable Virtio – KVM Forum 2013

I/OI/O

GuestGuest

vhost/qemuvhost/qemu

�The guest posts I/O requests in ring-queue (shared with the

QEMU or vhost) and sends a request notification (PIO)

�QEMU or vhost processes the requests and sends a reply

notification (virtual interrupt)

How Virtio works today ?

I/O Request

Notification

(PIO)

I/O Reply

Notification

(virtual interrupt)

Ring
Queue

I/O DeviceI/O Device

5

Efficient and Scalable Virtio – KVM Forum 2013

How I/O notifications are sent/received

VCPU
Thread
(Core X)

guest

kvm

I/O
Thread
(Core Y)

vhost/qemu

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O
Request

Complete I/O
Request

PIO

Virtual Interrupt
Injection

CPU context switch (VMExits and VMEntries)
I/O processing
Guest execution

Forced Exit
(via IPI)

�1 thread per virtual CPU (VCPU)

�1 or more threads per virtual I/O device

6

Efficient and Scalable Virtio – KVM Forum 2013

Is this model scalable with the number of guests, cores and I/O

bandwidth ?

Core 1

VM1

Core N+1

I/O
VM1

Core N

…

Core 2

VM2

Exit
I/O

VM2

Exit

VM2
VCPU

VM1
VM2

VM1

Exit

VM2
VCPU

VM1
VCPU

ExitExit

VMj
VCPU

I/O
VMj

Exit

VMi
VCPU

VM1
VCPU

I/O
VM1

VM2
VCPU

I/O
VM2

Exit

VCPU and I/O thread-based scheduling for all cores

(host Linux scheduler)

E
x
e
c
u
ti
o
n
 T

im
e

Depends on Linux (host) thread scheduler

but the scheduler has no information about

the I/O activity of the Virtio queues.…

7

Efficient and Scalable Virtio – KVM Forum 2013

Facts and Trends

�Notifications cause exits (context switches) == overhead!

�Current trend is:

– Towards multi-core systems with an increasing numbers of

cores per socket (4->6->8->16->32) and guests per host

– Faster networks with expectation of lower latency and

higher bandwidth (1GbE->10GbE->40GbE->100GbE)

� I/O virtualization is a CPU intensive task, and may require

more cycles than the available in a single core

We need a Virtio back-end that considers these

facts and trends!

8

Efficient and Scalable Virtio – KVM Forum 2013

I/O
Core

ELVIS (based on vhost): use fine-grained I/O scheduling and

dedicate cores to improve scalability and efficiency

Core 1

VM1

I/O
Core

I/O
VM1

Core N

VMi
I/O

VM2
I/O

VMn

fine-grained I/O scheduling

Core 2

VM2

I/O
VM2
I/O
VMi

thread-based scheduling

E
x
e
c
u
ti
o
n
 T

im
e

VM2 VM1

VMj

VMi
I/O

Core
I/O

Core
Core 1

VM1
VCPU

I/O
Core

I/O
VM1

Core N

VMi
VCPU I/O

VM2
I/O
VMj

…

Core 2

VM2
VCPU

I/O
VM2
I/O
VMi

E
x
e
c
u
ti
o
n
 T

im
e

VM2
VCPU

VM1
VCPU

VMj
VCPU

VMi
VCPU

• Process queues based on the I/O activity
• Balance between throughput and latency
• No process/thread context switches for I/O
• Exitless communication (next slide)
• Consider if the queue’s owner (VM) is running or not (not yet implemented)

1 vhost thread per
I/O core handles

requests of many
VMs/Virtio devices

9

Efficient and Scalable Virtio – KVM Forum 2013

ELVIS: remove notifications overhead to further improve efficiency

VCPU
Thread
(Core X)

guest

kvm

(time)

I/O
Thread
(Core Y)

vhost

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O
Request

Complete I/O
Request

ELVIS

VCPU
Thread
(Core X)

guest

kvm

(time)

I/O
Thread
(Core Y)

vhost

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O
Request

Complete I/O
Request

Traditional
Paravirtual

I/O

Polling

Para-virtual posted
interrupts (via ELI)

10

Efficient and Scalable Virtio – KVM Forum 2013

ELI: Exitess Interrupts to simulate Posted Interrupts

�ELI configures the CPU to deliver all interrupts to the guest

�ELI runs the guest using a shadow IDT

�Host interrupts are bounced back to the host in the form of
exceptions and re-generated with software interrupts/self IPI

�…without the guest being aware of it

KVM

Shadow
IDT

Interrupt
Handler

Assigned
Interrupt

Physical

Interrupt

Non-assigned
InterruptELI

Delivery

Guest
IDT

VM

Shadow
IDT

IDT Entry

IDT Entry

…

IDT Entry

P=0

P=1

P=0

Handler

#NP

#NP

IDT Entry #GP

IDTR
Limit

11

Efficient and Scalable Virtio – KVM Forum 2013

ELI: Exitless Interrupts - Completion

�Guests write to the LAPIC EOI register

�Old LAPIC interface:

– KVM traps memory accesses � page granularity

�New LAPIC interface (x2APIC), required for Exitless

Completions

– KVM traps accesses to MSRs � register granularity

ELI gives direct access
only to the EOI register

12

Efficient and Scalable Virtio – KVM Forum 2013

Para-Virtual Posted Interrupts based on ELI

�Posted-Interrupts: new HW feature to inject a virtual interrupt
from a core running in root mode to a VM running in a

different core (guest mode) without forcing an exit

�Para-Virtual Posted interrupts:

– Write the virtual interrupt vector to be injected in a

descriptor (shared memory between KVM and the guest’s

kernel)

– Send IPI (pre-defined vector) using ELI

– Guest is modified to handle the IPI and call the
corresponding (virtual) interrupt handler

13

Efficient and Scalable Virtio – KVM Forum 2013

� Single vhost-thread in a dedicated core:

– Monitors the activity of all queues (number of pending requests, how
long the requests are waiting, queue progress…)

– Decide which queue should be processed and for how long

ELVIS: Fine-grained I/O scheduling in a nutshell

Min
data

Max
data

Q2 is
stuck

Q2: latency sensitiveQ1: throughput intensive Q3: throughput intensive

Dedicated
I/O Core

Q2 is
Stuck but not
passed min

…

Check queues’
activity

Linux scheduler
time-slice

14

Efficient and Scalable Virtio – KVM Forum 2013

ELVIS: Placement of threads, memory and interrupts

�Dedicate 1 I/O core per CPU socket

– Cores per socket continue to increase year by year

– More cores are required to virtualize more bandwidth at
lower latencies (network links continue to be improved)

– NUMA awareness: shared LLC cache and memory
controller, DDIO technology

�Deliver interrupts to the “corresponding” I/O core

– Interrupts are processed by I/O cores and do not disturb

the running the guests

– Improve locality

– Multi-queue, Multi-port and SR-IOV adapters can dedicate

interrupts per queue/port/virtual function

15

Efficient and Scalable Virtio – KVM Forum 2013

From Research to Practice: Status, Work in Progress and Future Work

� Patches published in github (based on Kernel 3.9)

– https://github.com/abelg/virtual_io_acceleration/commits/ibm-io-acceleration-3.9-
github

� Work in progress by Eyal Moscovici <eyalmo@il.ibm.com>

– Control mechanism (sysfs interface) to:

• allocate or de-allocate vhost threads on the fly

• migrate a Virtio device/queue to a different vhost thread on the fly

– Policy framework to monitor the system and orchestrate the control mechanism

� Get support to upstream the following features:

1. Shared vhost-thread: same thread handles many virtio devices – default 1 thread
per virtio device as it is today

2. Control mechanism (sysfs): allocate/de-allocate vhost-threads and assign queues
to vhost-threads

3. Vhost statistics (sysfs): expose virtio queues and vhost-thread progress/load

4. Polling optimization: poll queues to remove PIO exits (guest-to-host notifications)

5. Policy mechanism: framework and rules to orchestrate the system (Python ?)

6. Porting to PowerKVM

16

Efficient and Scalable Virtio – KVM Forum 2013

Performance Evaluation

� Implementation

– Based on KVM (Linux Kernel 3.1 / QEMU 0.14)

– With VHOST, in-kernel paravirtual I/O framework

– Use ELI patches to implement para-virtual posted-interrupts and to
improve hardware-assisted non-interposable I/O (SR-IOV)

� Experimental Setup

– IBM System x3550 M4, dual socket 8 cores per socket Intel Xeon
E2660 2.2GHz (SandyBridge)

– Dual port 10GbE Intel x520 SRIOV NIC

– 2 identical servers: one used to host the VMs and the other used to
generate load on bare-metal

17

Efficient and Scalable Virtio – KVM Forum 2013

Methodology

�Repeated experiments using 1 to 14 UP VMs

– 1x10GbE when running up-to 7 VMs

– 2x10GbE when running more than 7 VMs

�Compared ELVIS against 3 other configurations

�No interposition

– Each VM runs on a dedicated core and has a SR-IOV VF
assigned using ELI

– The closer ELVIS is to this configuration, the smaller the
overhead is (used to evaluate ELVIS efficiency)

18

Efficient and Scalable Virtio – KVM Forum 2013

Methodology (cont.)

�N=number of VMs (1 to 14)

�Used N+1 cores (N≤ 7) or N+2 cores (N>7)

– This is the resource overhead for I/O interposition

�ELVIS

– 1 dedicated core per VCPU (VM)

– 1 core (N<=7) or (N>7) 2 cores dedicated for I/O

�Baseline

– N+1 cores (N ≤ 7) or N+2 cores (N>7) to run VCPU and I/O
threads (no thread affinity)

�Baseline+Affinity

– Baseline but dedicate 1 core per VCPU and pin I/O threads
to dedicated I/O cores

19

Efficient and Scalable Virtio – KVM Forum 2013

Netperf – TCP Stream 64Bytes (throughput intensive)

1x10Gb port

ELVIS: 1 core dedicated for I/O and 1

dedicated core per VM (N+1 total)

Baseline: N+1 cores (to handle I/O and to

run the VMs)

No Interposition: N cores to run the VMs

Numbers of VMs

2x10Gb port

ELVIS: 2 cores dedicated for I/O and 1

dedicated core per VM (N+2 total)

Baseline: N+2 cores (to handle I/O and to

run the VMs)

No Interposition: N cores to run the VMs

•Scaled perfectly

•1 core managed to handle I/O
for 7 VMs (cores)

•Maximum throughput

•Coalesced more interrupts
than the SR-IOV device
(4K-11K vs. 30K ints/sec)

20

Efficient and Scalable Virtio – KVM Forum 2013

Netperf – UDP Request Response (latency sensitive)

•Latency slightly increased with more VMs

•Better than No Interposition in some cases because
enabling SR-IOV in the NIC increases latency by 22%
(ELVIS disables SR-IOV)

21

Efficient and Scalable Virtio – KVM Forum 2013

Memcached - 90% get, 10% set, 32 concurrent requests per VM
1KB value size, 64B key size

•I/O core saturated after 3 VMs

•ELVIS was up to 30% slower than No interposition
when the I/O core was not saturated, but was always
30%-115% better than Baseline

I/O core
saturated

22

Efficient and Scalable Virtio – KVM Forum 2013

Filebench – block I/O interposition based on host RAM disk
4x4KB random writes, 4x4KB random reads per VM

•Latency remains
constant

•Throughput increases
linearly

Numbers of VMs

Added 1 core

23

Efficient and Scalable Virtio – KVM Forum 2013

Filebench (*) - 4 threads performing 8KB random reads per VM

using fusion-io (PCIe flash) as a block device for the VMs

(*) Evaluation performed by Razya Ladelsky <razyal@il.ibm.com> using a

different machine setup, Kernel 3.9, QEMU 1.3, and vhost-block back-end

shared by Asias He <asias@redhat.com>

Number of cores used = number of VMs + 1

24

Efficient and Scalable Virtio – KVM Forum 2013

Conclusions and Future Work

�Current trend towards multi-core systems, towards faster
networks and block devices makes Virtio inefficient and not
scalable

�ELVIS presents a new efficient and scalable model based on

vhost

�Future Work

– Mechanism to dynamically allocate or release I/O cores and

map Virtio queues to I/O cores

– Policy to monitor the system load, decide how many I/O

cores are required and map queues to I/O cores

25

Efficient and Scalable Virtio – KVM Forum 2013

Questions ?

